Volume 6, Issue 1, October 2017, Page: 1-4
Compton Scattering of a Vortex Light Beam
Mazen Nairat, Physics Department, Al Balqa Applied University, Al Salt, Jordan
George Goedecke, Physics Department, New Mexico State University, Las Cruces, USA
David Voelz, Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, USA
Received: May 14, 2017;       Accepted: Jun. 1, 2017;       Published: Jul. 17, 2017
DOI: 10.11648/j.optics.20170601.11      View  2108      Downloads  129
Abstract
Energy-momentum conservation laws in Compton scattering are analyzed. The conservation of total angular momentum is applied to a general formula that describes the variation of the light angular momentum. The Compton scattering model of a vortex beam is generalized to describe the momentum exchange beyond the well-known photon wave number shift. The illustrated analysis indicates that the light angular momentum may vary due to Compton scattering.
Keywords
Compton Scattering, Light Angular Momentum, Conservation of Momentum
To cite this article
Mazen Nairat, George Goedecke, David Voelz, Compton Scattering of a Vortex Light Beam, Optics. Vol. 6, No. 1, 2017, pp. 1-4. doi: 10.11648/j.optics.20170601.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Compton, Arthur H. "A Quantum Theory of the Scattering of X-Rays by Light Elements". Phys Rev 21 (5): 483–502. (1923).
[2]
P. Senthilkumaran, J. Masajada, S. Sato, Interferometry with vortices, Int. J. Opt. (2012).
[3]
Progress in Optics, in: M. R. Dennis, K. O’Holleran, M. J. Padgett, E. Wolf (Eds.), Elsevier, (2009).
[4]
S. Stock, A. Surzhykov, S. Fritzsche, and D. Seipt 1. "Compton scattering of twisted light: angular distribution and polarization of scattered photons ". Physical Review a 92, 013401 (2015).
[5]
I. Ivanov, and V. Serbo. "Scattering of twisted particles: Extension to wave packets and orbital helicity”, Phys Rev A, 84 (3): 033804-9.
[6]
U. D. Jentschura and V. G. Serbo, “Generation of High-Energy Photons with Large Orbital Angular Momentum by Compton Backscattering”, Phys. Rev. Lett. 106, 013001.
[7]
Xiangdong Ji “Deeply virtual Compton scattering”. Phys. Rev. D 55, 7114 (1997).
[8]
F. Gori, G. Guattari, and C. Padovani, "Bessel-Gauss Beams”, Opt. Commun., 64, 491, (1987).
[9]
A. O'Neil, I. MacVicar, L. Allen, and M. Padgett. “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam”. Phys Rev Let 88 (5): 053601-4, (2002).
[10]
L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes” Phys. Rev. A 45, 8185. (1992).
[11]
M. Padgett, and L. Allen. "Light with a twist in its tail”, Contemporary Physics, 2000, 41 (5), (2000).
[12]
L. Allen, V. Lembessis, and M. Babiker “Spin-orbit coupling in free-space Laguerre-Gaussian light beams” Phys. Rev. A 53, R2937, (1996).
Browse journals by subject