Volume 7, Issue 1, June 2018, Page: 32-37
Analysis on Photo Emission and Absorbing Spectrum on GaN Sample by Finite Difference Time Domain Method
Phyoe Sandar Win, Department of Electronic Engineering, Mandalay Technological University, Mandalay, Myanmar
Kathy Kyaw Min, Department of Electronic Engineering, Mandalay Technological University, Mandalay, Myanmar
Hla Myo Tun, Department of Electronic Engineering, Yangon Technological University, Yangon, Myanmar
Zaw Min Naing, Department of Electronic Engineering, Yangon Technological University, Yangon, Myanmar
Win Khaing Moe, Department of Electronic Engineering, Yangon Technological University, Yangon, Myanmar
Received: Jun. 24, 2018;       Accepted: Jul. 5, 2018;       Published: Jul. 31, 2018
DOI: 10.11648/j.optics.20180701.15      View  475      Downloads  13
Abstract
III-Nitride semiconductors are especially capable for both electronics and optical devices. The capability of the III-Nitride semiconductors as light emitters to extent the electromagnetic spectrum from deep ultraviolet light, throughout the whole visible region, and into the infrared part of the spectrum, is a significant characteristic, making this material indispensable for the areas of light emitting devices. The near and far field characteristics of the GaN samples are studied by affecting the finite-difference time domain (FDTD) technique. The far region spreading characteristics at diverse incident angles are also conferred. In addition, the spreading field would be concentrated and the transmission efficiency could be enhanced by the phase shift caused by the dielectric substrate. The intended of optoelectronic devices fictitious from III-Nitride materials is supported by acquaintance of refractive index and absorption coefficient of these materials.
Keywords
Photo Emission, Absorption Spectrum, GaN Sample, Finite Difference Time Domain Method
To cite this article
Phyoe Sandar Win, Kathy Kyaw Min, Hla Myo Tun, Zaw Min Naing, Win Khaing Moe, Analysis on Photo Emission and Absorbing Spectrum on GaN Sample by Finite Difference Time Domain Method, Optics. Vol. 7, No. 1, 2018, pp. 32-37. doi: 10.11648/j.optics.20180701.15
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
[2]
S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992), and references therein.
[3]
S. Nakamua, S. Peartan, and G. Fasol, The Blue Laser Diode, 2nd edition (Springer, Berlin, 2000).
[4]
W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997).
[5]
G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo, and Y. Q. Mao, Appl. Phys. Lett. 75, 2455 ~1999!; G. S. Cheng, L. D. Zhang, S. H. Chen, Y. Li, L. Li, X. G. Zhu, Y. Zhu, G. T. Fei, and Y. Q. Mao, J. Mater. Res. 15, 347 (2000).
[6]
C. C. Tang, S. S. Fan, M. L. de la Chapelle, and P. Li, Chem. Phys. Lett. 333, 12 (2001).
[7]
B. O. Dabousi, J. Rodriguez-Viejo, F. M. Midulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).
[8]
Yee, K., “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., Vol. 14, No. 3, 302–307, 1966.
[9]
www.tf.uni-kiel.de
[10]
Sze, S. M., Physics of Semiconductor Devices, Wiley, New York, 2nd ed., 1981.
[11]
Chopra, K. L., R. C. Kainthla, D. K. Pandya, A. P. Thakoor. Physics of Thin Films, Academic Press: New York. 12 (1982) 169.
[12]
Swanepoel R J. Phys. E: Sci. Instrum. 16 (1983) 1214.
[13]
F. Abeles and M L Theye, Surf. Sci. 5, 325 (1966).
[14]
R. Swanepoel, J. Phys. E 16, 1214 (1983).
[15]
R. Swanepoel, J. Phys. E 17, 896 (1984).
[16]
J. Szczyrbowski, J. Phys. D 11, 583 (1978).
[17]
M. Nowak, Thin Solid Films 254, 200 (1995).
[18]
O. Ambacher, M. Arzberger, D. Brunner, H. Angerer, F. Freudenberg, N. Esser, T. Wethkamp, K. Wilmers, W. Richter and M. Stutzmann, MIJ-NIR 2, Art. 22 (1997).
[19]
S. H. Wemple and J. A. Seman, App. Opt. 12, 2947 (1973).
[20]
R. J. Elliott, Phys Rev 108, 1384, 1957.
[21]
C. Tanguy, IEEE J. Quantum Electron 32, 1746, (1998).
[22]
M. D. Sturge, Phys Rev 127, 768, (1962).
[23]
Barker A S Jr 1963 Phys. Rev. 132 1474.
[24]
Vadiraj Kalya Tulasidas, “Photoluminescence and applications of Ni:ZnS in photovoltaic cells”, Japanese Journal of Applied Physics 57, 052302 (2018).
[25]
Svetlana V. Boriskina, “Efficiency Limits of Solar Energy Harvesting via Internal Photoemission in Carbon Materials”, Photonics 2018, 5, 4; doi: 10. 3390/photonics5010004.
Browse journals by subject